Интерполирование

Энциклопедия Брокгауза Ф.А. и Ефрона И.А. (1890 - 1916гг.) Статьи для написания рефератов, курсовых работ, научные статьи, биографии (118447 статей и 6000 рисунков).

А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я A B C D E F G H I J K L M N O P Q R S T U V W Z
И ИА ИБ ИВ ИГ ИД ИЕ ИЖ ИЗ ИИ ИЙ ИК ИЛ ИМ ИН ИО ИП ИР ИС ИТ ИУ ИФ ИХ ИЦ ИЧ ИШ ИЩ ИЮ ИЯ
ИНА
ИНВ
ИНГ
ИНД
ИНЕ
ИНЖ
ИНЗ
ИНИ
ИНК
ИНН
ИНО
ИНР
ИНС
ИНТ
ИНУ
ИНФ
ИНХ
ИНЦ
ИНЧ
ИНШ
ИНЪ
ИНЬ
ИНЯ

Интерполирование в математике — один из важнейших способов приближенного вычисления. Задача Интерполирование заключается в том, чтобы по данным величинам некоторой функции для известных значений переменных независимых (аргументов) найти величину функции для произвольного (обыкновенно промежуточного) значения этих переменных независимых. Этой задачей занимались Валлис, Ньютон, Эйлер и другие математики. Найти формулу Интерполирование значит заменить искомую функцию более простой, обыкновенно многочленом, причем коэффициенты и степени этого многочлена подбираются так, чтобы значение его для данного значения переменных независимых совпадало с заданными значениями искомой функции. Формулы Интерполирование представляют выражения, в которых искомая функция представляется при помощи данных величин функции и их последовательных разностей. В нижеследующей таблице в первом столбце стоят последовательные аргументы (значения независимой переменной), во втором — соответствующие величины функции, а в следующих — последовательные разности, так что b''' = а" — а''', b" = а' — а"... с" = b"b"'...

Для вычисления величины функции а для аргумента Т + nh, где n < 1, можно употребить одну из следующих формул Интерполирование:

Формула Ньютона.

a = ao + {(b' + b1)/2 — 1/6[(d' + d1)/2] +...}n + {co/2 — eo/24 +...}n2 + {1/6[(d' + d1)/2] —...}n3 +...

Формула Бесселя.

a = ao + nb1 + [n(n — 1)/1.2].[(co + c1)/2] + [n(n — 1)(n — 1/2)/1.2.3]d1 + [(n + 1).n(n — 1)(n — 2)/1.2.3.4].[(eo + e1)/2] +...

Формула Стирлинга.

a = ao + [(b' + b1)/2]n + co(n2/1.2) + [(d' + d1)/2].[(n — 1)n(n + 1)/1.2.3] + eo[(n — 1)n2(n + 1)/1.2.3.4] + ...

Числовой пример. Даны склонения Луны для отдельных моментов, следующих через 12 часов, и требуется найти склонение Луны для 2 янв. в 15 час. среднего времени.

Для 15 ч. 2-го января n = ¼, и потому, употребив одну из вышеприведенных формул Интерполирование, получится а = 12°58'59,4".

Простейший случай Интерполирование встречается при подыскивании логарифмов чисел, которые в таблицах даются лишь для известных последовательных значений аргумента. В этом случае аргументы настолько сближены, что действительное значение имеют только первые разности; прочие разности равны нулю, и потому все вышеприведенные формулы обращаются в a = ao + nb, т. е. Интерполирование сводится к решению простой пропорции.

При помощи Интерполирование производится и нахождение аргумента для данного промежуточного значения функции, т. е. решается и обратная задача. В этом случае одну из формул Интерполирование нужно решить относительно неизвестной n. Так как коэффициенты у различных степеней n весьма быстро уменьшаются, то вычисление производится последовательными приближениями, причем для первого приближения принимается n = (a — a0)/b. При вычислении по таблицам чисел по данному логарифму это первое приближение есть уже окончательное решение.

Если аргументы не представляют арифметической прогрессии и величины функции даны для нескольких произвольных значений аргументов х1, х 2..... хп, то величина функции для всякого другого значения аргумента x вычисляется по формуле Лагранжа:

F(x) = U1{[(x — x2)(x — x3) ... (x — xn)]/[(x — x2)(x1 — x3) ... (x1 — xn)]} + U2{[(x — x1)(x — x3)... (x — xn)]/[(x2 — x1)(x2 — x3) ... (x2 — xn)]} +... + Un{[(x — x1)(x — x2) ... (x — xn-1)]/[(xn — x1)(xn — x2) ... (xn — xn-1)]} +...

где U1 = F(x1), U2 = F(x2) ... Un = F(xn).

Употребление этой формулы встречается при Интерполирование наблюдений.

Геометрическое значение Интерполирование заключается в проведении параболы высших степеней через ряд данных точек на плоскости. Чем число данных точек больше, тем проведенная через них парабола ближе к неизвестной кривой. Если положение точек определено лишь с известной степенью приближения (напр. из наблюдений), то от интерполяционной кривой требуется иногда не то, чтобы она прошла через все данные точки, а чтобы она заняла некоторое среднее положение, по возможности меньше уклоняясь в ту или другую сторону от этих точек.

Для функций от двух и более аргументов формулы Интерполирование значительно сложнее. Когда приходится пользоваться таблицами с двумя входами, то на практике прибегают к двум последовательным Интерполирование сперва по одному, а затем по другому аргументу.

В практических приложениях определение значения функции для аргумента, лежащего не между данными, а вне их, известно под названием экстраполирования и совершается по правилам Интерполирование с той лишь разницей, что некоторые разности приходится вычислять, считая число их ограниченным. Числовые результаты экстраполирования всегда менее благонадежны, чем результаты Интерполирование Литература см. Исчисление конечных разностей.

B. Витковский.

Смотрии так же...