Координаты, в математике

Энциклопедия Брокгауза Ф.А. и Ефрона И.А. (1890 - 1916гг.) Статьи для написания рефератов, курсовых работ, научные статьи, биографии (118447 статей и 6000 рисунков).

А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я A B C D E F G H I J K L M N O P Q R S T U V W Z
К КЫ КА КВ КГ КЕ КЁ КИ КЛ КМ КН КО КР КС КТ КУ КХ КШ КЫ КЬ КЭ КЮ КЯ
КОЛ
КОН
КОА
КОБ
КОВ
КОГ
КОД
КОЕ
КОЖ
КОЗ
КОИ
КОЙ
КОК
КОЛ
КОМ
КОН
КОО
КОП
КОР
КОС
КОТ
КОУ
КОФ
КОХ
КОЦ
КОЧ
КОШ
КОЩ
КОЭ
КОЯ

Координаты, в математике — величины, определяющие положение точки. В Декартовых прямоугольных Координаты положение точки определяется тремя расстояниями ее от трех взаимно перпендикулярных плоскостей; пересечения этих плоскостей представляют собой три прямые, выходящие из одной точки, называемой началом, и именуются осями Координаты Декартовы косые Координаты — в них три координатные плоскости составляют между собой углы не прямые, и за Координаты точки принимаются расстояния ее от плоскостей, считаемые по прямым параллельным осям. Однородные К — положение точки определяется величинами X, Y, Z, T, помноженными на произвольные множители, причем сами эти величины представляют собой расстояния точки от четырех сторон некоторого тетраэдра. Между величинами Х, Y, Z и Т всегда существует соотношение вида aX+bY+cZ+dT =1, где а, b, с, d есть константы. Каждая Декартова Координаты x может быть выражена формулой x=(тХ+пТ+pZ+qT)/(аХ+bY+cZ+dT) и все уравнения выходят однородными. Трилинейные Координаты В геометрии на плоскости вместо тетраэдра берется треугольник и положение точки определяется расстояниями ее от сторон этого треугольника, помноженными на произвольные множители. Бинарные Координаты — за Координаты точки, на определенной прямой, могут быть приняты расстояния точки от двух данных точек, помноженные на произвольные множители. За полярные Координаты на плоскости принимаются: расстояние ОМ = ρ точки М от определенной точки О, называемой началом, и угол θ, составляемый прямой ОМ с некоторой определенной прямой ОА, называемой полярной осью. Расстояние ОМ = ρ называется радиусом-вектором. Чтобы от этих Координаты перейти к полярным Координаты в пространстве, представим себе, что плоскость, проходящая через точку M и полярную ось ОА, вращается около полярной оси, и введем новую Координаты λ = угол, составляемый этой плоскостью с некоторой неподвижной плоскостью, проходящей через ОА.

Координаты сферические. — Если начало полярных координат взять в центре сферы, то все точки сфер имеют одинаковый радиус-вектор и останутся изменяемыми только углы θ и λ. Обычно вместо θ берется другая координата φ =90- θ, которая называется широтой, угол же λ — долготой. Этими двумя координатами определяются географические положения точек земного шара. В координатах полуполярных или цилиндрических положение точки определяется расстоянием ее от некоторой плоскости и полярными координатами ρ и θ ее проекции на эту плоскость. В биполярных координатах на плоскости положение точки определяется расстояниями ее от двух данных точек. Тангенциальные координаты — положение плоскости может быть определено тремя величинами, например, тремя отрезками, отсекаемыми плоскостью от трех данных прямых, выходящих из одной точки. Уравнением f (u, v, w)=O между этими отрезками u, v, w определяется множество плоскостей, огибающих некоторую поверхность. Если это уравнение линейное, то им определяется точка и величины u, v, w называются тангенциальными координатами. Полярные тангенциальные координаты — Гальфен называет длину р перпендикуляра, опущенного из неподвижной точки на касательную к кривой, и угол θ, составляемый этим перпендикуляром с данным направлением, полярными тангенциальными координатами. Плюкеровы координаты прямой: прямая в Декартовых координатах выражается уравнениями: bz-cy+a'=0; cx-az+b'=O, из которых вытекает: ay-bx+c'=O, при условии aa'+bb'+cc'=O. Величины: a, a', b, b', c, c' определяют положение прямой и называются координатами прямой. Криволинейные координаты — если три поверхности f1(х, у, z)= λ, f2(х, у, z)= μ, f3(х, у, z)= ν, в которых λ, μ и ν есть произвольные параметры, пересекаются в точке, положение которой определяется, то параметры λ, μ и ν могут быть приняты за координаты этой точки. С изменением параметров каждое из написанных трех уравнений представляет особое семейство координатных поверхностей. Если за координатные поверхности приняты эллипсоиды, однополые гиперболоиды и двуполые гиперболоиды, представляющие собой поверхности конфокальные, то координаты называются эллиптическими.

Н. Делоне.

Смотрии так же...