Комплекс линейный

Энциклопедия Брокгауза Ф.А. и Ефрона И.А. (1890 - 1916гг.) Статьи для написания рефератов, курсовых работ, научные статьи, биографии (118447 статей и 6000 рисунков).

А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я A B C D E F G H I J K L M N O P Q R S T U V W Z
К КЫ КА КВ КГ КЕ КЁ КИ КЛ КМ КН КО КР КС КТ КУ КХ КШ КЫ КЬ КЭ КЮ КЯ
КОЛ
КОН
КОА
КОБ
КОВ
КОГ
КОД
КОЕ
КОЖ
КОЗ
КОИ
КОЙ
КОК
КОЛ
КОМ
КОН
КОО
КОП
КОР
КОС
КОТ
КОУ
КОФ
КОХ
КОЦ
КОЧ
КОШ
КОЩ
КОЭ
КОЯ

Комплекс линейный — трехмерная совокупность прямых линий, наполняющих собой непрерывно все пространство по определенному закону. Прямые, входящие в состав комплекса, называются его лучами. Всякая плоскость содержит в себе непрерывную совокупность лучей данного комплекса, огибающих некоторую кривую определенного, одного и того же для всех плоскостей, класса. Через всякую точку пространства проходит непрерывный ряд лучей данного комплекса, образующих некоторую коническую поверхность определенного, одного и того же для всех точек, порядка. Порядок этой конической поверхности и класс упомянутой кривой выражаются одним и тем же числом, которое и принимается за порядок комплекса. Комплекс 1-го порядка, например, может быть представлен по следующему его свойству: лучи комплекса 1-го порядка расположены в пространстве таким образом, что все прямые, находящиеся на одинаковом кратчайшем расстоянии δ от некоторой прямой, называемой центральной осью комплекса, и наклоненные к этой оси под одним и тем же углом, тангенс которого равен отношению постоянного параметра комплекса к δ, — принадлежат комплексу и составляют семейство лучей касательных к винтовым линиям одного и того же хода, начерченным на прямом цилиндре и описанным около центральной оси радиусом δ. Изменяя δ от нуля до бесконечности, получим ряд цилиндров и ряд семейств касательных к ним лучей. Совокупность всех семейств таких лучей и составляет комплекс 1-го порядка. С увеличением δ уменьшается угол наклонения лучей к центральной оси. Называя через x, y, z, x1, y1, z1 координаты двух точек, составим величины (x-x1), (y-y1), (z-z1), (yz1-y1z), (x1z-z1х), (xy1-x1y) и дадим этим величинам название 6-ти координат прямолинейного отрезка, заключающегося между точками (x, y, z) и (x1, y1, z1), так как положение и величина этого отрезка вполне определяются такими 6-ю величинами. Всякое однородное уравнение n -ой степени между координатами прямолинейного отрезка определяет собой комплекс n -го порядка. Совокупность двух таких уравнений определяет конгруэнцию. Совокупность трех таких уравнений определяет собой линейчатую поверхность. Теория линейного комплекса, дающая самую тесную связь между механикой и геометрией и гениально изложенная творцом ее, Плюккером, в его "Neue Geometrie des Raumes" (1868 г.), получила в настоящее время широкое развитие в виде теории сложения винтов (см. Сложение винтов).

П. Делоне.

Смотрии так же...