Комплекс линейный — трехмерная совокупность прямых линий, наполняющих собой непрерывно все пространство по определенному закону. Прямые, входящие в состав комплекса, называются его лучами. Всякая плоскость содержит в себе непрерывную совокупность лучей данного комплекса, огибающих некоторую кривую определенного, одного и того же для всех плоскостей, класса. Через всякую точку пространства проходит непрерывный ряд лучей данного комплекса, образующих некоторую коническую поверхность определенного, одного и того же для всех точек, порядка. Порядок этой конической поверхности и класс упомянутой кривой выражаются одним и тем же числом, которое и принимается за порядок комплекса. Комплекс 1-го порядка, например, может быть представлен по следующему его свойству: лучи комплекса 1-го порядка расположены в пространстве таким образом, что все прямые, находящиеся на одинаковом кратчайшем расстоянии δ от некоторой прямой, называемой центральной осью комплекса, и наклоненные к этой оси под одним и тем же углом, тангенс которого равен отношению постоянного параметра комплекса к δ, — принадлежат комплексу и составляют семейство лучей касательных к винтовым линиям одного и того же хода, начерченным на прямом цилиндре и описанным около центральной оси радиусом δ. Изменяя δ от нуля до бесконечности, получим ряд цилиндров и ряд семейств касательных к ним лучей. Совокупность всех семейств таких лучей и составляет комплекс 1-го порядка. С увеличением δ уменьшается угол наклонения лучей к центральной оси. Называя через x, y, z, x1, y1, z1 координаты двух точек, составим величины (x-x1), (y-y1), (z-z1), (yz1-y1z), (x1z-z1х), (xy1-x1y) и дадим этим величинам название 6-ти координат прямолинейного отрезка, заключающегося между точками (x, y, z) и (x1, y1, z1), так как положение и величина этого отрезка вполне определяются такими 6-ю величинами. Всякое однородное уравнение n -ой степени между координатами прямолинейного отрезка определяет собой комплекс n -го порядка. Совокупность двух таких уравнений определяет конгруэнцию. Совокупность трех таких уравнений определяет собой линейчатую поверхность. Теория линейного комплекса, дающая самую тесную связь между механикой и геометрией и гениально изложенная творцом ее, Плюккером, в его "Neue Geometrie des Raumes" (1868 г.), получила в настоящее время широкое развитие в виде теории сложения винтов (см. Сложение винтов).
П. Делоне.