Фениламины

Энциклопедия Брокгауза Ф.А. и Ефрона И.А. (1890 - 1916гг.) Статьи для написания рефератов, курсовых работ, научные статьи, биографии (118447 статей и 6000 рисунков).
Федеральный интернет-магазин школьного оборудования в Новосибирске.
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я A B C D E F G H I J K L M N O P Q R S T U V W Z
Ф ФА ФЕ ФИ ФЛ ФО ФР ФТ ФУ ФЫ ФЬ ФЭ ФЮ
ФЕА
ФЕБ
ФЕВ
ФЕГ
ФЕД
ФЕЕ
ФЕЖ
ФЕЗ
ФЕЙ
ФЕК
ФЕЛ
ФЕМ
ФЕН
ФЕО
ФЕР
ФЕС
ФЕТ
ФЕХ
ФЕЦ
ФЕШ
ФЕЭ

Фениламины или анилины. — Под этим названием подразумеваются такие соединения ароматического ряда, в которых один или несколько атомов водорода бензольного ядра замещены группами NH 2; следовательно, простейший Фениламины будет иметь формулу C 6H5—NH2. Очевидно, гомологи бензола образуют и соответствующие гомологи простейшего Фениламины, или анилина (см.). Фениламины теоретически могут быть производимы двояким путем: 1) постепенным замещением атомов водорода в аммиаке фенильными остатками, и тогда мы получим, как и в жирном ряду, моно-Фениламины C 6H5—NH2, ди-Фениламины (C 6H5)2 NH и три-Фениламины (C 6H5)3 N; тетрафениламмониевых оснований до сих пор неизвестно. Понятно, что этим путем можно образовать и смешанные Фениламины, в которых атомы водорода аммиака замещены различными ароматическими или жирными радикалами, например:

метилфенилтолиламин и т. д. 2) Постепенным замещением одного, двух, трех и т. д. атомов водорода бензольного кольца группами NH 2. В этом случае образуются гомологические ряды: фенилендиаминов, триамидобензолов и т. д., формулы простейших членов которых последовательно будут C 6H5NH2, C6H4(NH2)2, C6H3(NH2)3 и т. д. На практике до сих пор удалось заместить только пять атомов водорода бензольного ядра, и след., указанные ряды полиаминов заканчиваются рядом пентаамидобензолов с простейшим членом C 6H(NH2)5, носящим название пентаамидобензола. Получаются первичные (см. Амины) моно- и поли-Фениламины главным образом из соответствующих нитросоединений:

C6H5NO2 +3H2 = C6H5NH2 + 2H2O;

C6H4(NO2)2 + 6H2 = C6H4(NH2)2 + 4H2O

и т. д., причем реакция эта ведется в большинстве случаев в кислом растворе и восстановителями служат или олово, или цинк, которые с кислотой выделяют водород, действующий на нитросоединение. Из кислот здесь удобнее брать соляную; но в некоторых случаях получения более сложных аминов в присутствии этой кислоты наблюдается хлорирование продукта, а потому часто соляную кислоту заменяют серной или уксусной и вместо олова тогда берется или цинк или железо. При указанной обработке полинитросоединений всегда все группы NO 2 восстановляются в группы NH 2; но возможно, употребляя менее энергичные восстановители, восстановлять постепенно группы NO 2. Для этой цели обыкновенно пользуются реакцией, открытой Зининым, именно восстановляют сернистым водородом и непременно в щелочном растворе. Таким способом, напр., легко получается нитроанилин из динитробензола:

С 6 Н 4(NO2)2 + 3H2S =C6H4(NO2)—NH2+2H2O+3S.

Однако, в случае более продолжительного действия сероводорода и, особенно, при нагревании восстановляется и вторая группа

NO2 = C6H4(NO2)NH2 + 3H2S = C6H4(NH2)2 + 2H2O + 3S

a в некоторых случаях присутствие в растворе щелочи может разлагать образующийся амин с выделением аммиака и образованием фенола (см.). Указанные реакции восстановления нитроароматических соединений совершаются, несомненно, в нескольких фазах. Так, ввиду того, что азотная кислота и ее производные вообще при осторожном восстановлении легко переходят в азотистую кислоту и ее производные и ввиду того, что нитротела, восстановляясь в кислом растворе, дают те же продукты, что и нитрозотела, то представляется весьма вероятным, что прежде всего нитротела и переходят в нитрозо-:

R—NO2 + 2H = R—NO + H2O.

При дальнейшем же восстановлении, как уже доказано Бамбергером, образуются β-фенилгидроксиламины:

R—NO + H2 = R—NH—OH

которые уже с новой молекулой водорода образуют амины

R—NH—ОН + H 2 = RNH2 + Н 2 О.

Кроме указанных реакций, можно еще получать Фениламины заменой гидроксила (ОН) в фенолах (см.) амидогруппой. Для этой цели обыкновенно нагревают фенол с соединением хлористого цинка и аммиака ZnCl 2—NH3 при темп. 300—350°:

С 6 Н 5 ОН + NH 3 = C6H5NH2 + Н 2O.

Однако способ этот очень редко употребляется в практике, так как выходы амина здесь малы и требуется очень высокое нагревание. Далее, первичные Фениламины образуются при сухой перегонке хлористоводородных солей смешанных жирноароматическ. вторичных аминов:

C6H5NHCH3—HCl = C6H5NH2 + CH3Cl.

Реакция эта имеет тоже только теоретический интерес и применяется иногда для доказательства строения того или другого амина. Из этого краткого обзора главнейших способов получения первичных Фениламины видно, что наибольшее значение имеет реакция восстановления нитро- или нитрозосоединений; в технике эта реакция также имеет громадное значение, но она требует в качестве исходного материала нитросоединения, которое получается исключительно нитрацией бензольного кольца, в частности ароматических углеводородов, из этих же последних только бензол, толуол, нафталин и антрацен имеются на заводах в значительных количествах, тогда как их гомологи получаются с таким трудом и, кроме того, нитруются с такими плохими выходами, что технике для получения их аминов пользуется способом Гофманна, который заключается в том, что хлористоводородную или сернокислую соль данного Фениламины нагревают в автоклавах с абсолютным метильным спиртом при температуре около 300—350°; при этом в первую фазу реакции образуется соль вторичного метил-Фениламины:

далее эта соль разлагается с выделением первичного Фениламины и хлористого метила:

этот же последний при высокой температуре реакции конденсируется с бензольным ядром:

R—NH3 + CH3Cl = R'(CH3)NH2 + НСl;

конденсация эта всегда происходит таким образом, что метильная группа всегда соединяется с углеродом бензольного кольца, находящимся в параположении к группе NH 2, если же это место занято, то соединение происходит в ортоположении; при занятых р- и о-местах реакция не идет. Таким путем на химических фабриках получают главным образом несимметрический m -ксилидин из р-толуидина:

В лабораториях это почти единственный удобный способ для получения тетра- и пентаметиламидобензолов. Этою же реакциею получаются дифениламин (C 6H5)2 NH и его гомологи: дитолиламин (С 6 Н 4—CH3)2 NH и т. д.; понятно, что в этом случае приходится брать не спирт, а соответствующий фенол:

С 6 Н 52 —НСl + С 6 Н 5 НО = (С 6 Н 5)2 NН + H 2 O + НСl.

Есть еще и другие способы получения вторичных Фениламины, но они имеют главным образом теоретический интерес. Так, напр., подобно тому, как в присутствии хлористого цинка при помощи аммиака в феноле можно заместить гидроксил амидогруппой, так же точно при помощи анилина его можно заместить амидофенильным радикалом, и в таком случае получится дифениламин:

C6H5OH + NH2C6H5 = C6H5NH—C6H5 + H2O.

Третичные Фениламины получаются действием при нагревании натриевых солей вторичных Фениламины на бромбензолы:

(C6H5)2N—Na + C6H5Br = (C6H5)3N + NaBr.

Что касается свойств Фениламины, то, с одной стороны, они напоминают жирные амины (см.) с несколько ослабленным основным характером, с другой же — им присущи и некоторые особенности, резко отличающие их от этих последних. Так как, вообще говоря, бензольное кольцо всегда придает соединениям слабо отрицательные свойства, то ничего нет удивительного, что при соединении с сильно положительной группой NH 2 фенильного остатка щелочные свойства ее сильно ослабляются и в первичных Фениламины мы имеем пример сравнительно слабых оснований, однако, способных все-таки с минеральными кислотами давать соли, а с галоидопроизводными спиртов — вторичные, третичные и до четверичных аммониевых оснований:

С 6 Н 52 + CH3 J = С 6 Н 5 NН—CH 3—HJ

C6H5NH2 + 2CH3J = C6H5N(CH3)2 —HJ + HJ и

C6H5NH2 + 3CH3J = C6H5N(CH3)3J + 2HJ.

При замещении водородов бензольного кольца отрицательными радикалами Фениламины еще более теряют свои основные свойства, так что, наприм., соли нитро-Фениламины (особенно полинитро-Фениламины) уже разлагаются водой. Точно так же теряются основные свойства аминов при замещении атомов водорода их амидогруппы фенилами, так что, напр., ди-Фениламины уже образует соли только с очень крепкими кислотами и соли эти с легкостью при действии воды распадаются на свои компоненты. Три-Фениламины солей с минеральными кислотами не образуют и по своему характеру являются совершенно индифферентными веществами. Подобно аммиаку, свободные Фениламины при нагревании с металлическим калием или натрием способны обменивать свой водород амидогруппы на эти металлы; известны, напр. анилин-калий и дикалий-анилин C 6H5 NHK и C 6H5NK2; точно так же известен и натрий-ди-Фениламины (C 6H5)2 NNa. Соединения эти прочны, однако, только в индифферентной среде и разлагаются уже водой на холоду по уравн.:

C6H5NHK + H2O = C6H5NH2 + КНО.

Особенно же характерной особенностью Фениламины, резко отличающей их от жирных аминов, является отношение их к азотистой кислоте. Так, первичные Фениламины при действии азотистой кисл. без охлаждения разлагаются, подобно соответствующим жирным аминам, на фенол, азот и воду

C6H5NH2 + HNO2 = C6H5—OH + N2 + Н 2O;

если же реакцию вести около 0° и в кислом растворе, то получаются диазосоединения (см.). При действии азотистой кислоты на вторичные Фениламины получаются, подобно тому как и в жирном ряду, нитрозоамины (см.). При действии HNO 2 на третичные Фениламины получаются р-нитрозоанилины:

С 6H5 N(СН 3)2 + HNO2 = NO—C6H4N(CH3)2 + H2O

(ср. в ст. Нитрозоамины превращение нитрозометиланилина в паранитрозометиланилин). Весьма интересны также реакции конденсации о-фенилендиаминов с различными телами (см. Фениленамидины, Хиноксалины, Феназины). Из отдельных представителей Фениламины наибольший интерес представляют: из первичных — простейший Фениламины, или анилин С 6 Н 5NH2, и его гомологи толуидины СН 3 С 6 Н 4NH2, ксилидины (CH3)2C6H3NH2 и кумидины (CH3)3C6H2NH2 и друг., затем фенилендиамины C6H4(NH2)2 и толуилендиамины CH3C6H3(NH2)2, триамидобензолы C6H3(NH2)3, из вторичных метиланилин C6H5—NH—CH3 и дифениламин (C6H5)2 NH, из третичных диметиланилин C6H5N(CH3)2, трифениламин (C6H5)3 N. Физические их свойства приведены в нижеследующей таблице [Об анилине, дифениламине, трифениламине и толуидинах см., кроме того, соответствующие статьи, а также Нитробензол и Краски органические искусственные (получение в технике и применение).]:

Название

Удельный вес

Точка плавления

Точка кипения

Анилин

1,0361 (0°)

—8°

184°

о-Толуидин

1,003 (20°)

—20°

197°

m- Толуидин

0,998 (25°)

жид.

199°

p- Толуидин

1,046

45°

198°

Ксилидин 1, 2, 3 *)

0,991 (15°)

жид.

223°

Ксилидин 1, 2, 4

0,918 (25°)

жид.

212°

Ксилидин 1, 2, 5

0,980 (15°)

15,5°

213,5°

Ксилидин 1, 2, 6

жид.

216°

Ксилидин 1, 3, 4

1,0755 (17,5°)

49°

226°

Ксилидин 1, 3, 5

0,993(0°)

жид.

220—221°

Кумидин 1, 3, 4, 5

67—68°

245°

 
Кумидин 1, 2, 3, 6

жид.

236°

Кумидин 1, 2, 4, 5

68°

234—235°

Кумидин 1, 2, 3, 5

36°

Кумидин 1, 2, 4, 6 (мезидин)

0,9633

жид.

229—230°

о-Фенилендиамин

102°

252°

m- Фенилендиамин

63°

287°

p- Фенилендиамин

147°

267'

Толуилендиамин:      
[1CH3 2, 3]

61°

255°

[1CH3 3, 4]

88°

265°

[1CH3 2, 4]

99°

280°

[1СН 3 2, 6]

103°

[1СH 3 3, 5]

жид.

284°

[1CH3 2, 5]

64°

273°

Триамидобензол:      
1, 2, 3

103°

330°

1, 2, 4

132°

340°

Метиланилин

0,976 (15°)

жид.

192°

Диметиланилин

0,957 (20°)

0,5°

192°

Дифениламин

1,159

54°

310°

Трифениламин

127°

выше 340°

*) В этом столбце цифры обозначают атомы углерода бензольного кольца, связанные с боковыми цепями, причем в моноаминах принято, что группа NH 2 всегда связана с углеродом 1.

Д. Хардин. Δ .

Смотрии так же...